	Vectors Mark Scheme		
1(a)	2a + b	[1] Vector representing M to L	
1(b)	$\frac{1}{2}(2\boldsymbol{a}+\boldsymbol{b})=\boldsymbol{a}+\frac{\boldsymbol{b}}{2}$	[1] Vector representing M to P	
1(c)	$4\begin{bmatrix} \mathbf{a} \\ \mathbf{b}/2 \end{bmatrix} = \begin{bmatrix} 4\mathbf{a} \\ 2\mathbf{b} \end{bmatrix} = 2\begin{bmatrix} 2\mathbf{a} \\ \mathbf{b} \end{bmatrix} = 2\overline{ML}$	[1] Vector representing M to N	
2	$\overrightarrow{GF} = 3\boldsymbol{a} - \boldsymbol{a} + 5\boldsymbol{b} + 4\boldsymbol{b}$	[1] Vector representing G to F which is the sum of G to E and E to F	
	$\overrightarrow{GF} = 2\boldsymbol{a} + 9\boldsymbol{b}$	[1] Vector representing G to F	
	$\overrightarrow{GH} = 3(2\boldsymbol{a} + 9\boldsymbol{b}) = 6\boldsymbol{a} + 27\boldsymbol{b}$	[1] Vector representing G to H which is 3 times G to F	
3	$\overrightarrow{FC} = \frac{a}{2}$	[1] Vector representing F to C	
	$\overrightarrow{BE} = \frac{3}{4}\boldsymbol{a}$	[1] Vector representing B to E	
	$\overrightarrow{FE} = \frac{5}{4}\boldsymbol{a} - \boldsymbol{b}$	$[1] \overrightarrow{FE} = \overrightarrow{FC} + \overrightarrow{CB} + \overrightarrow{BE}$	
4(a)	$\overrightarrow{LM} = -2a$, $\overrightarrow{MN} = 2a + 2b$, $\overrightarrow{NK} = 3a + b$.	$\boxed{ [1] \ \overrightarrow{LK} = \overrightarrow{LM} + \overrightarrow{MN} + \overrightarrow{NK}}$	
	$\overrightarrow{LK} = -2\mathbf{a} + 2\mathbf{a} + 2\mathbf{b} + 3\mathbf{a} + \mathbf{b}$ $\overrightarrow{LK} = 3\mathbf{a} + 3\mathbf{b}$	[1] Vector representing L to K in its simplest form	
4(b)	$\overrightarrow{LP} = \frac{1}{3}(3\boldsymbol{a} + 3\boldsymbol{b})$	[1] Vector representing L to P	
	$\overrightarrow{LP} = \boldsymbol{a} + \boldsymbol{b}$	[1] Simplifying	
	$\overrightarrow{MP} = \overrightarrow{ML} + \overrightarrow{LP} = 2a + a + b$	[1] Vector representing M to P	
	$\overrightarrow{MP} = 3\boldsymbol{a} + \boldsymbol{b} = \overrightarrow{NK}$	[1] Showing M to P is the same as N to K	
5(a)	-a+b	[1] Vector representing B to C	
5(b)	-2 <i>a</i>	[1] Vector representing D to E	
5(c)	-2a + b	[1] Vector representing D to E	
5(d)	a + b	[1] Vector representing D to E	

6	$\overrightarrow{DA} = 4\mathbf{b}$	[1] Magnitude of 4
	$\overrightarrow{BE} = 2a$	[1] Vector representing B to E
	$\therefore \overrightarrow{AE} = 5a$	[1] Vector representing A to E
	$\overrightarrow{DE} = 4\mathbf{b} + 5\mathbf{a}$	[1] Vector representing D to E
7(a)	-a+b	[1] Vector representing B to C
7(b)	$\overrightarrow{(AC)} = \overrightarrow{(CE)} = b$	[1] Vector representing C to E
	$\overrightarrow{(DE)} = \frac{1}{4}\overrightarrow{(CE)} = \frac{1}{4}b$	[1] Vector representing D to E
	$\overrightarrow{(CD)} = \overrightarrow{(CE)} - \overrightarrow{(DE)} = b - \frac{1}{4}b = \frac{3}{4}b$	[1] Vector representing C to D
	$\overrightarrow{(DB)} = \overrightarrow{(DC)} + \overrightarrow{(CB)} = -\frac{3}{4}b - b + a = -\frac{7}{4}b + a$	[1] Vector representing D to B
8	$\overrightarrow{BC} = -2a + 3b$	[1] Vector representing B to C
	$\overrightarrow{BD} = -\frac{a}{2} + \frac{3}{4}b$	[1] Vector representing B to D
	$\overrightarrow{AD} = 2\boldsymbol{a} - \frac{\boldsymbol{a}}{2} + \frac{3}{4}\boldsymbol{b} = \frac{3}{2}\boldsymbol{a} + \frac{3}{4}\boldsymbol{b}$	[1] Vector representing A to D
	$\overrightarrow{AE} = \frac{1}{2}(\frac{3}{2}\boldsymbol{a} + \frac{3}{4}\boldsymbol{b})$	[1] Vector representing A to E
	$= \frac{3}{4}a + \frac{3}{8}b = \frac{3}{4}(a + \frac{b}{2})$	[1] Simplification not required

9(a)	2a-3b	$[1] \overline{DC} = \overline{DA} + \overline{AC}$	
9(b)	AD: BE: CF = 3: 2: 2 $AD: BE: CF = 3b: 2b: 2b$ $CF = 2b$	[1] Ratio finds \overrightarrow{FC}	
	$ \overrightarrow{(FD)} = \overrightarrow{(FC)} + \overrightarrow{(CB)} + \overrightarrow{(BA)} + \overrightarrow{(AD)} $ $ = -2b - a - a + 3b $ $ = -2a + b $	[1] Final answer	
9(c)	$\overrightarrow{(DE)} = -3b + a + 2b$ $= a - b$	[1] Vector representing D to E	
	$ \overline{(EX)} = x \overline{(DE)} $ Need 1 lot of $\overline{(EX)}$ to reach CF, and gives: $ \overline{(CX)} = \overline{(XF)} = b $	[1] Comparison	
	CX: XF = 1:1	[1] Correct Ratio	
10	$ \overline{(AD)}: \overline{(DY)}: \overline{(YC)} = 1:1:1 $ $ \overline{(AD)} = \overline{(DY)} = \overline{(YC)} = a $ $ \overline{(BC)} = \overline{(BD)} + \overline{(DY)} + \overline{(YC)} $ $ = -(3b - a) + a + a $ $ = a - 3b + a + a $ $ = 3a - 3b $ $ = 3(a - b) $	[1] Find vector B to C	
	$ \overrightarrow{(AB)} = \overrightarrow{(AD)} + \overrightarrow{(DB)} $ $ = a + 3b - a $ $ = 3b $ $ \overrightarrow{(AX)} : \overrightarrow{(XB)} = 2:1 $ $ \overrightarrow{(AX)} = 2b $	[1] Find vector A to X	
	$\overrightarrow{(XY)} = \overrightarrow{(XA)} + \overrightarrow{(AD)} + \overrightarrow{(DY)} = -2b + a + a$ $= 2a - 2b$ $= 2(a - b)$ BC is a multiply of XY, so they are going in the same direction	[1] Find vector X to Y	